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ABSTRACT 
We present a model for predicting expert text entry rates 
for several input methods on a 12-key mobile phone 
keypad.  The model includes a movement component based 
on Fitts’ law and a linguistic component based on digraph, 
or letter-pair, probabilities.  Predictions are provided for 
one-handed thumb and two-handed index finger input.  For 
the traditional multi-press method or the lesser-used two-
key method, predicted expert rates vary from about 21 to 
27 words per minute (wpm).  The relatively new T9 
method works with a disambiguating algorithm and inputs 
each character with a single key press.  Predicted expert 
rates vary from 41 wpm for one-handed thumb input to 46 
wpm for two-handed index finger input.  These figures are 
degraded somewhat depending on the user’s strategy in 
coping with less-than-perfect disambiguation.  Analyses of 
these strategies are presented. 

Keywords 
Text entry, mobile systems, mobile phones, keypad input, 
human performance modeling, Fitts' law, digraph 
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INTRODUCTION 
Designing new text entry methods for computing systems is 
labour intensive.  It is also expensive, since a working 
prototype must be built, and then tested with real users.  
Because most text entry methods take time to learn, the 
testing should preferably take place in longitudinal settings.  
However, longitudinal user studies are tedious [13].  A 
pragmatic approach is to develop a predictive model to 
"test" new text entry methods a priori — without building 
prototypes or training users.  Models, at their best, can be 
valuable and informative tools for designers of new text 
entry methods [1, 13]. 

This research is concerned with the problem of text entry 
on mobile phones.  Although we usually think of phones as 
devices for speech input and output, the transmission and 
reception of text messages on mobile phones is increasing 
rapidly.  For example, Finland's largest teleoperator, 
Sonera, reports a six-fold increase of text messages during 
1998 (http://www.sonera.fi/investor_en/publications/ 
annualreports/sonera98_english.pdf). 

Text entry on contemporary mobile phones is mainly based 
on the 12-key keypad (Figure 1). This paper describes a 
method for predicting potential expert user text entry speed 
for input methods that utilize the 12-key keypad.  The 
model provides individual predictions for one-handed 
thumb and two-handed index finger use. 

 

 
Figure 1.  The 12-key keypad 

 

State of the Art of Text Entry on Mobile Phones 
The 12-key keypad consists of number keys 0-9 and two 
additional keys (# and *).  Characters A-Z are spread over 
keys 2-9 in alphabetic order.  The placement of characters 
is similar in most mobile phones, as it is based on an 
international standard [9].  The placement of the SPACE 
character varies among phones.  In this paper, we assume 
the 0-key serves as the SPACE character. 

Since there are fewer keys than the 26 needed for the 
characters A-Z, three or four characters are grouped on 

 

 

 

 



each key.  Thus, ambiguity arises.  For example, if the user 
presses key 2, the system must determine which of the 
characters A, B, or C the user intends.  There are several 
approaches to this problem.  We present three: the multi-
press, the two-key, and the T9 methods. 

Multi-press Input Method 
The multi-press method is currently the main text input 
method for mobile phones.  In this approach, the user 
presses each key one or more times to specify the input 
character.  For example, the number key 2 is pressed once 
for the character ’A’, twice for ’B’, and three times for ’C’. 

The multi-press approach brings out the problem of 
segmentation.  When a character is placed in the same key 
as the previously entered character (e.g., the word on), the 
system must determine whether the new key press still 
"belongs to" the previous character or represents a new 
character.  Therefore, a mechanism is required to specify 
the start of a new character. 

There are two main solutions to this.  One is to use a 
timeout period within which key presses belong to same 
character.  Most phones have a timeout, typically between 
1 and 2 seconds.  The other solution is to have a special 
key to skip the timeout (“timeout kill”) thus allowing the 
next character — on the same key — to be entered directly.  
Some phone models use a combination of the two 
solutions.  For example, Nokia phones include both a 1.5-
second timeout and the provision for a timeout kill using 
the arrow keys.  The user may decide which strategy to use.  
We provide predictions for both. 

Two-key Input Method 
In the two-key method, the user presses two keys 
successively to specify a character.  The first key press, as 
in the multi-press method, selects the “group” of characters 
(e.g., key 5 for ‘JKL’). The second press is for 
disambiguation: one of the number keys, 1, 2, 3, or 4, is 
pressed to specify the position of the character within the 
group.  For example to enter the character ‘K’, the user 
presses 5-2 (‘K’ is second character in ‘JKL’). 

The two-key method is very simple.  There are no timeouts 
or such.  Each character A-Z is entered with exactly two 
key presses.  SPACE is entered with a single press of the 0-
key. 

The two-key method is not in common use for entering 
Roman characters, however.  In Japan, a similar method 
(often called the “pager” input method) is very common for 
entering Katakana characters. 

T9 Input Method 
A third way to overcome the problem of ambiguity is to 
add linguistic knowledge to the system.  The T9 input 
method, patented by Tegic Communications, Inc. (Seattle, 
WA) [8], uses a dictionary as the basis for disambiguation.  
The method is based on the same key layout as the multi-

press method, but each key is pressed only once.  For 
example, to enter "the", the user enters the key sequence 8-
4-3-0.  The 0-key, for SPACE, delimits words and 
terminates disambiguation of the preceding keys.  T9 
compares the word possibilities to its linguistic database to 
"guess" the intended word.   

Naturally, linguistic disambiguation is not perfect, since 
multiple words may have the same key sequence.  In these 
cases, T9 gives the most common word as a default.  To 
select an alternate word, the user presses a special NEXT 
function key.  For example, the key sequence 6-6 gives 
“on” by default.  If another word was intended, the user 
presses * to view the next possible word.  In this case, “no” 
appears.  If there are more alternatives, NEXT (*) is 
pressed repeatedly until the intended word appears.  
Pressing 0 accepts the word and inserts a SPACE character. 

Based on our informal analyses, disambiguating works 
quite well.  In a sample of the 9025 most common words in 
English (ftp://ftp.itri.bton.ac.uk/) produced from the British 
National Corpus, the user must press NEXT only after 
about 3% of the words.  Naturally, the whole vocabulary is 
larger than 9025 words, so this estimate may be optimistic. 
However, 5% is a reasonable approximation, and will be 
used throughout this paper. 

Most major mobile phone manufacturers have licensed the 
T9 input method, and, as of 1999, it has surfaced in 
commercial products (e.g., the Mitsubishi MA125, the 
Motorola i1000Plus, the Nokia 7110). There is also a 
touch-screen version of T9 that is available for PDAs (e.g.,  
the Palm Computing Palm III, the Philips Nino).  Bohan et 
al. [2], describe an evaluation of the touch screen version; 
however, to our knowledge, there are no published 
evaluations of T9 with physical keys. 

MODEL FOR MOBILE PHONE TEXT ENTRY 
Our model is similar to that of Soukoreff and MacKenzie 
[15].  It is based on two components: a movement model 
(Fitts' law) and a linguistic model (digraph probabilities). 

Movement Model (Fitts’ Law) 
The core of this paper is the application of Fitts' law to the 
mobile phone keypad.  Fitts' law [6] is a quantitative model 
for rapid, aimed movements.  It can be used to calculate the 
potential text entry speed of an expert user, assuming that 
the text entry performance of an expert is highly over-
learned, and thus is limited only by motor performance.  
We will elaborate more on this assumption later. 

Fitts' law has been applied with success to pointing devices 
[5, 12] and on-screen keyboards [13, 14].  There are only a 
few studies, however, that apply Fitts' law to physical 
keyboards.  Card et al. [3] suggested using Fitts' law for 
keying times on a calculator.  Drury and Hoffman [4] used 
Fitts’ law to evaluate the performance tradeoffs of various 
inter-key gaps for data entry keyboards. 



Fitts’ law is expressed as 

MT = a + b log2(A/W + 1) (1) 

where A is the length (amplitude) of a movement, and W is 
target size (width), in this case, the size of the pressed key 
[10]. Fitts' law is inherently one-dimensional, as evidenced 
by a single "width" term.  Physical keys on a mobile phone 
keypad, however, are laid out in a two-dimensional array, 
and each key has both width and height.  Therefore, we 
need to extend the model to two dimensions. For this 
purpose we substitute for W in Equation 1 the smaller of 
the width and height, as suggested by MacKenzie and 
Buxton [11].  In most cases, height is less than the width 
for keys of a mobile phone.  Therefore, we used the height 
of the keys as W. 

The log term in Equation 1 is called the index of difficulty 
(ID): 

MT = a + b × ID (2) 

The two constants, a and b, are determined empirically by 
regressing observed movement times on the index of 
difficulty.  For this purpose, we collected empirical data 
from both one-handed thumb use (Experiment 1, see 
below) and two-handed index finger use (Experiment 2). 

In mobile phone text entry, each character is entered with 
one or more key presses, i.e., movements. The first of 
these, the initial movement, M0, consists of moving the 
finger over the desired key (e.g., key 'ABC' for character 
'a') and pressing the key.  Depending on the input method, 
there may be none, one or several additional movements 
(M1, M2, etc.). 

For each movement (M0, M1, M2, etc.), Fitts' law is used to 
predict the movement time (MT0, MT1, MT2, etc.).  The 
total time to enter a character, CT, is calculated as the sum 
of all the required movements: 

CTij = Σ  MTk (3) 

The details, of course, depend on the text entry method. 
Below, we explain the models for each of the three text 
entry methods. 

Movement Model for Multi-press Input Method 
In the multi-press method, the user presses each key one or 
several times.  There are two strategies, varying in their 
treatment of the timeout.  We model these separately. 

If the user allows the built-in timeout to segment 
consecutive characters on the same key, the character entry 
time is calculated as follows: 

CT = MT0 + N × MTrepeat + Ttimeout (4) 

MT0 is the initial movement time, i.e., the time to move 
one's finger or thumb from the first key of the digraph to 
the second key. N is the number of key repetitions, which is 
an integer from 0 to 3 depending on character (e.g., 
character 'C' requires two extra presses of key 'ABC', N = 
2). MTrepeat is the key-repetition time, which equals the 
intercept a in the Fitts' law equation (ID = 0). 

For Ttimeout, we used 1.5 seconds.  This is the time used in 
Nokia phones, although it may vary among manufacturers.  
Ttimeout is required only if the second character, j, is on the 
same key as the first character, i.   

Alternatively, the user may explicitly override the timeout 
by pressing a timeout kill key (the down-arrow key in 
Nokia phones).  In the latter case, the character entry time 
is  

CT = MT0 + N × MTrepeat + MTkill (5) 

where MTkill is the time to move to the arrow key.   

Movement Model for Two-Key Input Method 
In the two-key method, each character except SPACE 
requires two key presses.  Therefore, character entry time is 
simply calculated as a sum of two movement times: 

CT = MT0 + MT1 (6) 

With the SPACE character, the second movement time is 
zero. 

Movement Model for T9 Input Method 
In the T9 input method, each key is pressed only once. 
Also, there is no timeout.  Therefore, the character entry 
time is simply calculated as: 

CT = MT0 (7) 

This model for T9 is for perfect disambiguation, and 
assumes the NEXT function is not needed.  We will discuss 
the implications of this in detail later. 

Linguistic Model (Digraph Probabilities) 
Our linguistic model uses a 27 × 27 matrix of letter-pair 
(digraph) frequencies in common English [15].  The 27 
characters include the letters A-Z and the SPACE 
character. 

Each letter-pair, i-j, is given a probability Pij based on an 
analysis of representative sample of common English. The 
sum of all probabilities is one: 

ΣΣ Pij = 1 (8) 

Since our predictions are based on a linguistic model, they 
are inherently language-specific, applying only to common 
English.  However, because the language model is simple, 
the results are easy to adapt to another language by 



changing the digraph probabilities according to that 
language. 

Combining the Models 
To develop predictions we need to combine the motor and 
linguistic models.  An average character entry time for the 
language (CTL) is calculated as a weighted average of 
character entry times for all digraphs: 

CTL = ΣΣ (Pij x CTij) (9) 

Taking the reciprocal of CTL gives us the average number 
of characters per second, which can be transformed into 
words per minute by multiplying by 60 seconds per 
minutes and dividing by 5 characters per word: 

WPM = (1 / CTL) × (60 / 5) (10) 

 

METHOD 
Our model is still incomplete, since the coefficients a and b 
in the Fitts’ law equations are unknown for finger input on a 
12-key phone keypad.  Two experiments were carried out 
to determine these coefficients.  Experiments 1 and 2 
described below sought to determine these for one-handed 
thumb input and two-handed index finger input, 
respectively. 

Experiment 1: One-handed Thumb Input 
In this experiment participants held the phone in a 
preferred hand and pressed the keys with the thumb of the 
same hand.  The other (non-preferred) hand was held idle. 

Participants 
Twelve volunteers (7 male, 5 female) participated in the 
study.  Most participants were employees of the Nokia 
Research Center in Helsinki.  Their age ranged from 24 to 
47 years, with an average of 32.6 years. 

Five of the participants were left-handed; however, two 
choose to hold the phone with their right hand.  The right-
handed participants held the phone in their right hand.  All 
participants had prior experience in using a 12-key phone 
keypad.  Ten participants were regular mobile phone users. 
The average mobile phone experience of all participants 
was 3.9 years. 

Apparatus 
The number keypad of a Nokia 5110 mobile phone was 
used as the model 12-key keypad (Figure 3).  Only the 
number keys (1-9) and * and # keys were used in the 
experiment.  Number keys are slightly larger than * and # 
keys.  The dimensions are shown in Figure 2.  As 
mentioned previously, the height of keys was used in 
calculating ID.  Key dimensions and distances between 
keys were measured using a slide gauge. 
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Test Tasks 
The participant’s task was to press specified keys on the 
phone keypad for a period of 10 seconds at a time.  
Participants were instructed to press the keys as fast as they 
could but to avoid errors. 

There were two types of tasks: 

(i) Single keys:  In these tasks the participants pressed only 
a single key. There were four key repeat tasks altogether 
(keys 1, 3, 7 and 9). 

(ii) Key pairs:  In these tasks the participants pressed two 
keys alternately for 10 seconds.  A subset of all possible 
pairs of keys was chosen to cover a range of movements, 
for example, from very short (e.g., key 1 - key 4) to very 
long (e.g., key 3 - key *).  The inter-key distances ranged 
from 9 to 38 mm, with an average of 20.6 mm.  The key 
pairs were selected to create similar movements for left- 
and right-handed participants. 

There were 26 key-pair tasks per participant. This made up 
a total of 30 tasks per participant, 360 tasks altogether. 

Procedure 
The tasks were presented to participants in random order.  
The "write messages" function of the phone (with number 
mode selected) was enabled during the tasks; thus, the 
phone automatically showed the number of written 
characters. 



A 10-second countdown timer controlled the task time 
(except for the first three participants, whose time was 
controlled manually with a stopwatch).  The test moderator 
signaled the start of each task by saying "1-2-3-go" and 
pressing the start key on the countdown timer.  After 10 
seconds, the countdown timer gave a clearly audible sound.  
The participants were instructed to stop pressing the keys 
when they heard this sound.  Key presses entered after the 
stop signal were ignored.  The test moderator checked the 
number of key presses from the phone’s display and 
recorded it in a spreadsheet file.  The average movement 
time (in milliseconds) between successive key presses was 
then calculated using formula: 

MT = 10000 / (N - 1) (11) 

where N is the number of key presses during a 10 second 
interval.  Error data were not collected. 

Experiment 2: Two-handed Index Finger Input 
Experiment 2 was similar to Experiment 1 except the index 
finger was used instead of the thumb.  Users held the phone 
in one hand and entered key presses with the index finger 
of the other hand. 

Participants 
Twelve volunteers (7 male, 5 female) participated in the 
study.  Seven had also participated in Experiment 1.  Ages 
ranged from 23 to 41 years, with an average of 29.8 years. 

Five of the participants were left-handed. One, however, 
choose to press keys with the right hand.  The right-handed 
participants used their right hand.  All participants had 
some experience using a standard phone keypad. Eleven 
were regular mobile phone users. The average mobile 
phone experience of all participants was 4.0 years. 

RESULTS 
Figure 4 shows the results from Experiment 1 and 2.  In 
both experiments, the movement time (MT) grows linearly 
with index of difficulty (ID), as predicted by Fitts’ law.  
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Figure 4. Results from Experiments 1 and 2 

A linear regression of MT on ID was performed. The 
results are given in Figure 5. 

 

 Intercept, a Slope, b  

 (ms) (ms/bit) Correlation 

Index finger 165 52 0.960 

Thumb 176 64 0.970 

Figure 5. Results from the linear regression 

 
The correlations in the linear regression are high, 
indicating that Fitts’ law predicts the movement time with 
high accuracy both with the index finger and thumb. 

Overall, the index finger was faster than the thumb. The 
average movement time between successive key presses in 
all conditions was 273 ms for the index finger, and 309 ms 
for the thumb. 

The analysis of variance of movement time showed clear 
main effects for both index of difficulty (F13,692 = 85.9, p < 
.0001) and input finger (F1,692 = 114.1, p < .0001). The ID-
by-finger interaction was not significant (F13,692 = 1.7, p > 
.05). 

The two points with ID = 0 are substantially to the left of 
the other points, and this is a concern.  Although it has 
been suggested that Fitts’ law does not apply when ID is 
small [7], a more legitimate explanation lies in the 
treatment of spatial variability in building the model.  Fitts' 
law is predicated on the assumptions that (a) the spatial 
distribution of end-points is normal and (b) 4% of the 
distribution falls outside the target region.  Where possible, 
it is desirable to use IDe computed from We and Ae — the 
actual, or “effective”, amplitude and width of the 
distributions.  We could not do so in this simple 
experiment because there was no means to capture end-
points.  However, if We and Ae could have been used, then 
clearly the task with ID = 0 would have We > 0 and Ae > 0, 
and, hence, IDe > 0.  This would tend to shift the points at 
ID = 0 to the right [10]. 

Model Predictions for Mobile Phone Text Input 
Based on Experiments 1 and 2, the movement time on 
mobile phone keypad can be reliably predicted using Fitts' 
law equations: 

MTindex finger = 165 + 52 log2(A/W + 1) ms (12)  

and 

MTthumb = 176 + 64 log2(A/W + 1) ms (13) 

Incorporating this information, our model gives predictions 
of potential expert user text entry speeds.  The results are 
shown in Figure 6. 



 Method Index finger Thumb 

 Multi-press 
  - wait for timeout  22.5 20.8 
  - timeout kill 27.2 24.5 

 Two-key 25.0 22.2 

 T9 45.7 40.6 

Figure 6. Results of model predictions (wpm) 

 

Two predictions are given for the multi-press method 
corresponding to the two possible interaction strategies.  If 
consecutive characters are on the same key, the user may 
either wait for the timeout to pass, or end it manually.  In 
our model, the timeout was 1.5 seconds.  Our model 
predicts that with this timeout, “timeout kill” is clearly the 
faster strategy (21% faster when using the index finger, 
18% with the thumb).  It is assumed that expert users adopt 
the faster strategy. This is supported by our observations of 
users at the Nokia Research Center: a majority of 
experienced multi-press users employ the timeout kill 
strategy. 

Predictions are clearly higher for the T9 method than for 
the multi-press and two-key methods.  These differences, 
and other interaction issues for T9, are discussed in detail 
later. 

In comparing the multi-press and two-key methods, the 
multi-press method is slower if the user employs the 
timeout strategy — waiting for the timeout between 
consecutive characters on the same key.  However, as 
expertise develops, users will invoke the timeout kill 
function.  With an optimal use of timeout kill, the multi-
press method is faster than the two-key method. 

Input via the index finger is also consistently faster than 
with the thumb. The difference is largest with T9 and the 
two-key input methods where the index finger is 13% faster 
than with the thumb.  The difference is smaller with the 
multi-press method.  This is due to the steeper slope of the 
Fitts’ law model for the thumb in Figure 4.  With small IDs 
the difference between the index finger and thumb is quite 
small; the multi-press method involves many key-
repetitions (ID = 0), which diminishes the difference 
between the index finger and thumb. 

Within the multi-press method, the difference for the index 
finger is larger with the “timeout kill” strategy (11%) than 
with “wait for timeout” (8%).  This is due to the constant 
length of the timeout, which diminishes the differences 
between input fingers in our “wait for timeout” results. 

Comparisons With Empirical Data 
There are, at present, no published data on text entry rates 
with mobile phones.  As this mode of interaction evolves 
and enters the mainstream of mobile computing, however, 
this should change.  Furthermore, there are few people who 

may be deemed “experts” in mobile phone text entry.  The 
investigation described herein is in anticipation of an ever-
increasing demand for this mode of text entry. 

While formal user studies are preferred, we commonly 
perform quick and simple checks of novel text entry 
techniques using the well-known phrase, “the quick brown 
fox jumps over the lazy dog”.  This 43-character phrase 
includes every letter of the alphabet, and therefore ensures 
that each key, or key combination, is visited during entry. 

Within our lab, one user performs a substantial amount of 
mobile phone text entry via the multi-press method, and, in 
our view, approaches the status of expert.  For example, 
this person routinely uses the timeout kill feature where 
applicable.  We asked this person to perform timed input of 
the quick-brown-fox phrase.  In three repetitions using 
thumb input, the times were 27 s, 23 s, and 24 s, with 0 
errors in each case.  The mean entry time was 24.6 s.  For a 
43-character phrase, this translates into a text entry rate of 
21.0 wpm.  This is surprisingly close to our predicted 
expert entry rate of 24.5 wpm. 

We asked the same user to perform the same test with a T9-
enabled cell phone.  We asked the user to ignore the 
possible need for the NEXT function, and to enter the 
phrase directly.  The entry times were 15 s, 15 s, and 16 s.   
The only error was for the key sequence 5-2-9-9-0, which 
T9 incorrectly disambiguated to “jazz” instead of “lazy”.  
The mean entry time of 15.7 s translates into an entry rate 
of 32.9 wpm.  Keeping in mind that this user does not use 
T9 on a daily basis, the observed rate is reasonably close to 
our predicted expert entry rate of 40.6 wpm. 

Interaction and Linguistic Issues for T9 
The very generous predictions for T9 in Figure 6 should be 
viewed in the narrow context of our model.  For example, 
our model is for experts and ignores the novice or learning 
behaviour that most users of this emerging input technique 
will experience.   

As well, our model attends only to the motor component of 
the interaction.  The need to visually scan the keyboard to 
find each character is not accounted for.  We feel this is a 
relatively minor issue, since most users are already familiar 
with phone keypads.  Expert status, in the sense of knowing 
the position of characters on a phone keypad, should be 
easily acquired in our view.  

Of greater concern is the role of the NEXT function with 
T9.  Two questions arise.  First, how often is the NEXT 
function required?   And second, what behaviour will users 
exhibit in using the NEXT function? 

The answer to the first question is determined by the 
dictionary, or linguistic model, embedded in T9.  It is 
relatively straightforward to determine the outcome of 
disambiguation for any dictionary.  For example, Figure 7 
provides an analysis using the word sample discussed 
earlier.  The results are quite impressive.  Of the 9025 



words in the sample, 8437 (95%) can be entered and 
uniquely disambiguated.   

The number of words requiring 1, 2, 3, 4, or 5 presses of 
the NEXT function is 476, 83, 23, 5, and 1, respectively. 
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Figure 7. Use of NEXT for a sample of 9025 words 

 

Figure 8 illustrates some ambiguous words – those 
requiring 4 or 5 presses of the NEXT function. 

 

Key 
sequence 

Initial 
word 

Presses  
of NEXT 

Subsequent 
words 

2-2-7-3 case 5 care, base, card, bare, 
cape 

2-6-9 any 4 boy, box, cow, box 

7-2-4-3 said 4 page, paid, raid, rage 

7-2-6 ran 4 sam, san, pan, ram 

7-2-9 say 4 saw, pay, raw, ray 

Figure 8. Examples of ambiguous words for T9 

 

The initial word for any key sequence is the one with the 
highest probability in the linguistic model, while 
subsequent words are produced in decreasing order of their 
probability.  Note that our word sample, as well as that in 
the T9 dictionary, includes proper nouns (e.g., Sam). 

Although the T9 dictionary and the disambiguation process 
are considered proprietary by Tegic, we tested a T9-
enabled mobile phone with the key sequences in Figure 8.  
All the words in Figure 8 were produced, although there 
were a few minor differences in the sequences. 

Answering the second question above is much more 
difficult since it involves user strategies.  Although as many 
as 95% of words entered will correctly appear by default, 
users will not necessarily anticipate this.  Thus, there is a 
need for the user to visually verify input.  This behaviour is 
outside the scope of our model, as noted earlier.  It is also a 

behaviour that is difficult to empirically model, since there 
are both perceptual and cognitive processes at work.   

Figure 9 presents a parametric analysis of the use of the 
NEXT function for two components of the behaviour for 
thumb input.  First, the percentage of words for which 
visual inspection is performed is included: 0%, 25%, 50%, 
75%, and 100%.   For the 0% condition, the user never 
visually verifies input.  For the 100% condition, the user 
visually verifies input after each word entered. 

Second, the perceptual-plus-cognitive time associated with 
visual inspection is shown along the horizontal axis as a 
continuum from 0 to 1000 ms.  Note that the movement 
time for multiple invocations of the NEXT function is quite 
small because it requires multiple presses of the same key 
(*). 
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Figure 9. Parametric analysis for T9 user 
behaviour (see text for discussion) 

 

Expert usage appears along the top line in Figure 9.  That 
is, the user always knows when the next function is 
required and never visually verifies input.  Although this 
behaviour will never fully occur, it may occur by degree.   
For example, a user may quickly learn that the word “on” 
requires the key sequence 6-6-0, whereas the word “no” 
requires the NEXT function: 6-6-*-0.   

If the user visually verifies input 50% of the time (far more 
often than necessary, in fact), and each inspection takes 
500 ms, then the T9 prediction falls to 35 wpm (see Figure 
9).  Bear in mind that this prediction is still predicated 
upon expert behaviour with respect to the keypad layout 
(i.e., no visual scan time to find the correct key).  So, the 
prediction is still overly generous, perhaps.   

Exploring hypothetical scenarios such as this, although 
important in characterizing user behaviour, is very weak in 
its ability to generate accurate predictions.  Modeling 
expert performance is a luxury that affords a simplified 



view of user behaviour.  Once we step off this ideal and 
attempt to accommodate more natural components of the 
interaction, there is an explosion in the sources and extent 
of variations.  And so, the preceding exploration of T9 
interaction will not be developed further.  Suffice it to say 
that we expect T9 text entry rates to be slower than those 
cited above, consistent with a user’s position on the 
learning curve and on the interaction strategy employed. 

There are many other interactions issues, as well, such as 
the need to input numeric and punctuation symbols, or 
words not in the dictionary.  Implementations of T9 we 
have tested include modes to insert words using the multi-
press technique or to insert symbols from a displayed list.  
These important properties of the interaction are not 
accounted for in our current model. 

CONCLUSIONS 
We have provided predictions for expert text entry rates for 
several input schemes on mobile phones.  The traditional 
multi-press method can support rates up to about 25 wpm 
or 27 wpm for one-handed thumb input or two-handed 
index finger input, respectively, provided the user 
effectively employs the timeout kill feature for consecutive 
characters on the same key.  If the timeout is used to 
distinguish consecutive characters on the same key, then 
the entry rates will decrease by about 4 wpm in each case. 

The two-key input technique is slightly slower than the 
multi-press method (using timeout kill): 22 wpm and 25 
wpm for one-handed thumb input and two-handed index 
finger input, respectively.  

The relatively new T9 technique requires only one key 
press per character, and relies on a built-in linguistic model 
to disambiguate input on a word-by-word basis.  Text entry 
rates of 41 wpm and 46 wpm are predicted for one-handed 
thumb input and two-handed index finger input, 
respectively.  These figures are for expert behaviour and a 
“perfect” disambiguation algorithm.  Our analyses suggest 
that word-level disambiguation for English text with the 
traditional character layout on phone keypad is achievable 
with about 95% accuracy.  The overhead of interacting 
with less-than-perfect disambiguation degrades 
performance, but the cost is difficult to quantify because of 
the complex and varied strategies that users may employ. 
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