
Predicting Text Entry Speed on Mobile Phones

Miika Silfverberg
Nokia Research Center

P.O. Box 407
FIN-00045 Nokia Group

Finland
+358 40 528 7759

miika.silfverberg@nokia.com

I. Scott MacKenzie
Dept. of Mathematics & Statistics

York University
Toronto, Ontario
Canada M3J 1P3
+1 416 736 2100

smackenzie@acm.org

Panu Korhonen
Nokia Research Center

P.O. Box 407
FIN-00045 Nokia Group

Finland
+358 40 504 7123

panu.korhonen@nokia.com

ABSTRACT
We present a model for predicting expert text entry rates
for several input methods on a 12-key mobile phone
keypad. The model includes a movement component based
on Fitts’ law and a linguistic component based on digraph,
or letter-pair, probabilities. Predictions are provided for
one-handed thumb and two-handed index finger input. For
the traditional multi-press method or the lesser-used two-
key method, predicted expert rates vary from about 21 to
27 words per minute (wpm). The relatively new T9
method works with a disambiguating algorithm and inputs
each character with a single key press. Predicted expert
rates vary from 41 wpm for one-handed thumb input to 46
wpm for two-handed index finger input. These figures are
degraded somewhat depending on the user’s strategy in
coping with less-than-perfect disambiguation. Analyses of
these strategies are presented.

Keywords
Text entry, mobile systems, mobile phones, keypad input,
human performance modeling, Fitts' law, digraph
frequencies

INTRODUCTION
Designing new text entry methods for computing systems is
labour intensive. It is also expensive, since a working
prototype must be built, and then tested with real users.
Because most text entry methods take time to learn, the
testing should preferably take place in longitudinal settings.
However, longitudinal user studies are tedious [13]. A
pragmatic approach is to develop a predictive model to
"test" new text entry methods a priori — without building
prototypes or training users. Models, at their best, can be
valuable and informative tools for designers of new text
entry methods [1, 13].

This research is concerned with the problem of text entry
on mobile phones. Although we usually think of phones as
devices for speech input and output, the transmission and
reception of text messages on mobile phones is increasing
rapidly. For example, Finland's largest teleoperator,
Sonera, reports a six-fold increase of text messages during
1998 (http://www.sonera.fi/investor_en/publications/
annualreports/sonera98_english.pdf).

Text entry on contemporary mobile phones is mainly based
on the 12-key keypad (Figure 1). This paper describes a
method for predicting potential expert user text entry speed
for input methods that utilize the 12-key keypad. The
model provides individual predictions for one-handed
thumb and two-handed index finger use.

Figure 1. The 12-key keypad

State of the Art of Text Entry on Mobile Phones
The 12-key keypad consists of number keys 0-9 and two
additional keys (# and *). Characters A-Z are spread over
keys 2-9 in alphabetic order. The placement of characters
is similar in most mobile phones, as it is based on an
international standard [9]. The placement of the SPACE
character varies among phones. In this paper, we assume
the 0-key serves as the SPACE character.

Since there are fewer keys than the 26 needed for the
characters A-Z, three or four characters are grouped on

each key. Thus, ambiguity arises. For example, if the user
presses key 2, the system must determine which of the
characters A, B, or C the user intends. There are several
approaches to this problem. We present three: the multi-
press, the two-key, and the T9 methods.

Multi-press Input Method
The multi-press method is currently the main text input
method for mobile phones. In this approach, the user
presses each key one or more times to specify the input
character. For example, the number key 2 is pressed once
for the character ’A’, twice for ’B’, and three times for ’C’.

The multi-press approach brings out the problem of
segmentation. When a character is placed in the same key
as the previously entered character (e.g., the word on), the
system must determine whether the new key press still
"belongs to" the previous character or represents a new
character. Therefore, a mechanism is required to specify
the start of a new character.

There are two main solutions to this. One is to use a
timeout period within which key presses belong to same
character. Most phones have a timeout, typically between
1 and 2 seconds. The other solution is to have a special
key to skip the timeout (“timeout kill”) thus allowing the
next character — on the same key — to be entered directly.
Some phone models use a combination of the two
solutions. For example, Nokia phones include both a 1.5-
second timeout and the provision for a timeout kill using
the arrow keys. The user may decide which strategy to use.
We provide predictions for both.

Two-key Input Method
In the two-key method, the user presses two keys
successively to specify a character. The first key press, as
in the multi-press method, selects the “group” of characters
(e.g., key 5 for ‘JKL’). The second press is for
disambiguation: one of the number keys, 1, 2, 3, or 4, is
pressed to specify the position of the character within the
group. For example to enter the character ‘K’, the user
presses 5-2 (‘K’ is second character in ‘JKL’).

The two-key method is very simple. There are no timeouts
or such. Each character A-Z is entered with exactly two
key presses. SPACE is entered with a single press of the 0-
key.

The two-key method is not in common use for entering
Roman characters, however. In Japan, a similar method
(often called the “pager” input method) is very common for
entering Katakana characters.

T9 Input Method
A third way to overcome the problem of ambiguity is to
add linguistic knowledge to the system. The T9 input
method, patented by Tegic Communications, Inc. (Seattle,
WA) [8], uses a dictionary as the basis for disambiguation.
The method is based on the same key layout as the multi-

press method, but each key is pressed only once. For
example, to enter "the", the user enters the key sequence 8-
4-3-0. The 0-key, for SPACE, delimits words and
terminates disambiguation of the preceding keys. T9
compares the word possibilities to its linguistic database to
"guess" the intended word.

Naturally, linguistic disambiguation is not perfect, since
multiple words may have the same key sequence. In these
cases, T9 gives the most common word as a default. To
select an alternate word, the user presses a special NEXT
function key. For example, the key sequence 6-6 gives
“on” by default. If another word was intended, the user
presses * to view the next possible word. In this case, “no”
appears. If there are more alternatives, NEXT (*) is
pressed repeatedly until the intended word appears.
Pressing 0 accepts the word and inserts a SPACE character.

Based on our informal analyses, disambiguating works
quite well. In a sample of the 9025 most common words in
English (ftp://ftp.itri.bton.ac.uk/) produced from the British
National Corpus, the user must press NEXT only after
about 3% of the words. Naturally, the whole vocabulary is
larger than 9025 words, so this estimate may be optimistic.
However, 5% is a reasonable approximation, and will be
used throughout this paper.

Most major mobile phone manufacturers have licensed the
T9 input method, and, as of 1999, it has surfaced in
commercial products (e.g., the Mitsubishi MA125, the
Motorola i1000Plus, the Nokia 7110). There is also a
touch-screen version of T9 that is available for PDAs (e.g.,
the Palm Computing Palm III, the Philips Nino). Bohan et
al. [2], describe an evaluation of the touch screen version;
however, to our knowledge, there are no published
evaluations of T9 with physical keys.

MODEL FOR MOBILE PHONE TEXT ENTRY
Our model is similar to that of Soukoreff and MacKenzie
[15]. It is based on two components: a movement model
(Fitts' law) and a linguistic model (digraph probabilities).

Movement Model (Fitts’ Law)
The core of this paper is the application of Fitts' law to the
mobile phone keypad. Fitts' law [6] is a quantitative model
for rapid, aimed movements. It can be used to calculate the
potential text entry speed of an expert user, assuming that
the text entry performance of an expert is highly over-
learned, and thus is limited only by motor performance.
We will elaborate more on this assumption later.

Fitts' law has been applied with success to pointing devices
[5, 12] and on-screen keyboards [13, 14]. There are only a
few studies, however, that apply Fitts' law to physical
keyboards. Card et al. [3] suggested using Fitts' law for
keying times on a calculator. Drury and Hoffman [4] used
Fitts’ law to evaluate the performance tradeoffs of various
inter-key gaps for data entry keyboards.

Fitts’ law is expressed as

MT = a + b log2(A/W + 1) (1)

where A is the length (amplitude) of a movement, and W is
target size (width), in this case, the size of the pressed key
[10]. Fitts' law is inherently one-dimensional, as evidenced
by a single "width" term. Physical keys on a mobile phone
keypad, however, are laid out in a two-dimensional array,
and each key has both width and height. Therefore, we
need to extend the model to two dimensions. For this
purpose we substitute for W in Equation 1 the smaller of
the width and height, as suggested by MacKenzie and
Buxton [11]. In most cases, height is less than the width
for keys of a mobile phone. Therefore, we used the height
of the keys as W.

The log term in Equation 1 is called the index of difficulty
(ID):

MT = a + b × ID (2)

The two constants, a and b, are determined empirically by
regressing observed movement times on the index of
difficulty. For this purpose, we collected empirical data
from both one-handed thumb use (Experiment 1, see
below) and two-handed index finger use (Experiment 2).

In mobile phone text entry, each character is entered with
one or more key presses, i.e., movements. The first of
these, the initial movement, M0, consists of moving the
finger over the desired key (e.g., key 'ABC' for character
'a') and pressing the key. Depending on the input method,
there may be none, one or several additional movements
(M1, M2, etc.).

For each movement (M0, M1, M2, etc.), Fitts' law is used to
predict the movement time (MT0, MT1, MT2, etc.). The
total time to enter a character, CT, is calculated as the sum
of all the required movements:

CTij = Σ MTk (3)

The details, of course, depend on the text entry method.
Below, we explain the models for each of the three text
entry methods.

Movement Model for Multi-press Input Method
In the multi-press method, the user presses each key one or
several times. There are two strategies, varying in their
treatment of the timeout. We model these separately.

If the user allows the built-in timeout to segment
consecutive characters on the same key, the character entry
time is calculated as follows:

CT = MT0 + N × MTrepeat + Ttimeout (4)

MT0 is the initial movement time, i.e., the time to move
one's finger or thumb from the first key of the digraph to
the second key. N is the number of key repetitions, which is
an integer from 0 to 3 depending on character (e.g.,
character 'C' requires two extra presses of key 'ABC', N =
2). MTrepeat is the key-repetition time, which equals the
intercept a in the Fitts' law equation (ID = 0).

For Ttimeout, we used 1.5 seconds. This is the time used in
Nokia phones, although it may vary among manufacturers.
Ttimeout is required only if the second character, j, is on the
same key as the first character, i.

Alternatively, the user may explicitly override the timeout
by pressing a timeout kill key (the down-arrow key in
Nokia phones). In the latter case, the character entry time
is

CT = MT0 + N × MTrepeat + MTkill (5)

where MTkill is the time to move to the arrow key.

Movement Model for Two-Key Input Method
In the two-key method, each character except SPACE
requires two key presses. Therefore, character entry time is
simply calculated as a sum of two movement times:

CT = MT0 + MT1 (6)

With the SPACE character, the second movement time is
zero.

Movement Model for T9 Input Method
In the T9 input method, each key is pressed only once.
Also, there is no timeout. Therefore, the character entry
time is simply calculated as:

CT = MT0 (7)

This model for T9 is for perfect disambiguation, and
assumes the NEXT function is not needed. We will discuss
the implications of this in detail later.

Linguistic Model (Digraph Probabilities)
Our linguistic model uses a 27 × 27 matrix of letter-pair
(digraph) frequencies in common English [15]. The 27
characters include the letters A-Z and the SPACE
character.

Each letter-pair, i-j, is given a probability Pij based on an
analysis of representative sample of common English. The
sum of all probabilities is one:

ΣΣ Pij = 1 (8)

Since our predictions are based on a linguistic model, they
are inherently language-specific, applying only to common
English. However, because the language model is simple,
the results are easy to adapt to another language by

changing the digraph probabilities according to that
language.

Combining the Models
To develop predictions we need to combine the motor and
linguistic models. An average character entry time for the
language (CTL) is calculated as a weighted average of
character entry times for all digraphs:

CTL = ΣΣ (Pij x CTij) (9)

Taking the reciprocal of CTL gives us the average number
of characters per second, which can be transformed into
words per minute by multiplying by 60 seconds per
minutes and dividing by 5 characters per word:

WPM = (1 / CTL) × (60 / 5) (10)

METHOD
Our model is still incomplete, since the coefficients a and b
in the Fitts’ law equations are unknown for finger input on a
12-key phone keypad. Two experiments were carried out
to determine these coefficients. Experiments 1 and 2
described below sought to determine these for one-handed
thumb input and two-handed index finger input,
respectively.

Experiment 1: One-handed Thumb Input
In this experiment participants held the phone in a
preferred hand and pressed the keys with the thumb of the
same hand. The other (non-preferred) hand was held idle.

Participants
Twelve volunteers (7 male, 5 female) participated in the
study. Most participants were employees of the Nokia
Research Center in Helsinki. Their age ranged from 24 to
47 years, with an average of 32.6 years.

Five of the participants were left-handed; however, two
choose to hold the phone with their right hand. The right-
handed participants held the phone in their right hand. All
participants had prior experience in using a 12-key phone
keypad. Ten participants were regular mobile phone users.
The average mobile phone experience of all participants
was 3.9 years.

Apparatus
The number keypad of a Nokia 5110 mobile phone was
used as the model 12-key keypad (Figure 3). Only the
number keys (1-9) and * and # keys were used in the
experiment. Number keys are slightly larger than * and #
keys. The dimensions are shown in Figure 2. As
mentioned previously, the height of keys was used in
calculating ID. Key dimensions and distances between
keys were measured using a slide gauge.

7 p qrs

*

6 m m

5 m m

10 m m

8 m m

Figure 2 Figure 3

Test Tasks
The participant’s task was to press specified keys on the
phone keypad for a period of 10 seconds at a time.
Participants were instructed to press the keys as fast as they
could but to avoid errors.

There were two types of tasks:

(i) Single keys: In these tasks the participants pressed only
a single key. There were four key repeat tasks altogether
(keys 1, 3, 7 and 9).

(ii) Key pairs: In these tasks the participants pressed two
keys alternately for 10 seconds. A subset of all possible
pairs of keys was chosen to cover a range of movements,
for example, from very short (e.g., key 1 - key 4) to very
long (e.g., key 3 - key *). The inter-key distances ranged
from 9 to 38 mm, with an average of 20.6 mm. The key
pairs were selected to create similar movements for left-
and right-handed participants.

There were 26 key-pair tasks per participant. This made up
a total of 30 tasks per participant, 360 tasks altogether.

Procedure
The tasks were presented to participants in random order.
The "write messages" function of the phone (with number
mode selected) was enabled during the tasks; thus, the
phone automatically showed the number of written
characters.

A 10-second countdown timer controlled the task time
(except for the first three participants, whose time was
controlled manually with a stopwatch). The test moderator
signaled the start of each task by saying "1-2-3-go" and
pressing the start key on the countdown timer. After 10
seconds, the countdown timer gave a clearly audible sound.
The participants were instructed to stop pressing the keys
when they heard this sound. Key presses entered after the
stop signal were ignored. The test moderator checked the
number of key presses from the phone’s display and
recorded it in a spreadsheet file. The average movement
time (in milliseconds) between successive key presses was
then calculated using formula:

MT = 10000 / (N - 1) (11)

where N is the number of key presses during a 10 second
interval. Error data were not collected.

Experiment 2: Two-handed Index Finger Input
Experiment 2 was similar to Experiment 1 except the index
finger was used instead of the thumb. Users held the phone
in one hand and entered key presses with the index finger
of the other hand.

Participants
Twelve volunteers (7 male, 5 female) participated in the
study. Seven had also participated in Experiment 1. Ages
ranged from 23 to 41 years, with an average of 29.8 years.

Five of the participants were left-handed. One, however,
choose to press keys with the right hand. The right-handed
participants used their right hand. All participants had
some experience using a standard phone keypad. Eleven
were regular mobile phone users. The average mobile
phone experience of all participants was 4.0 years.

RESULTS
Figure 4 shows the results from Experiment 1 and 2. In
both experiments, the movement time (MT) grows linearly
with index of difficulty (ID), as predicted by Fitts’ law.

0

50

100

150

200

250

300

350

400

0 1 2 3

Index of difficulty (bits)

A
ve

ra
ge

 m
ov

en
t

tim
e

(m
se

c)

Thumb

Index finger

Figure 4. Results from Experiments 1 and 2

A linear regression of MT on ID was performed. The
results are given in Figure 5.

 Intercept, a Slope, b

 (ms) (ms/bit) Correlation

Index finger 165 52 0.960

Thumb 176 64 0.970

Figure 5. Results from the linear regression

The correlations in the linear regression are high,
indicating that Fitts’ law predicts the movement time with
high accuracy both with the index finger and thumb.

Overall, the index finger was faster than the thumb. The
average movement time between successive key presses in
all conditions was 273 ms for the index finger, and 309 ms
for the thumb.

The analysis of variance of movement time showed clear
main effects for both index of difficulty (F13,692 = 85.9, p <
.0001) and input finger (F1,692 = 114.1, p < .0001). The ID-
by-finger interaction was not significant (F13,692 = 1.7, p >
.05).

The two points with ID = 0 are substantially to the left of
the other points, and this is a concern. Although it has
been suggested that Fitts’ law does not apply when ID is
small [7], a more legitimate explanation lies in the
treatment of spatial variability in building the model. Fitts'
law is predicated on the assumptions that (a) the spatial
distribution of end-points is normal and (b) 4% of the
distribution falls outside the target region. Where possible,
it is desirable to use IDe computed from We and Ae — the
actual, or “effective”, amplitude and width of the
distributions. We could not do so in this simple
experiment because there was no means to capture end-
points. However, if We and Ae could have been used, then
clearly the task with ID = 0 would have We > 0 and Ae > 0,
and, hence, IDe > 0. This would tend to shift the points at
ID = 0 to the right [10].

Model Predictions for Mobile Phone Text Input
Based on Experiments 1 and 2, the movement time on
mobile phone keypad can be reliably predicted using Fitts'
law equations:

MTindex finger = 165 + 52 log2(A/W + 1) ms (12)

and

MTthumb = 176 + 64 log2(A/W + 1) ms (13)

Incorporating this information, our model gives predictions
of potential expert user text entry speeds. The results are
shown in Figure 6.

 Method Index finger Thumb

 Multi-press
 - wait for timeout 22.5 20.8
 - timeout kill 27.2 24.5

 Two-key 25.0 22.2

 T9 45.7 40.6

Figure 6. Results of model predictions (wpm)

Two predictions are given for the multi-press method
corresponding to the two possible interaction strategies. If
consecutive characters are on the same key, the user may
either wait for the timeout to pass, or end it manually. In
our model, the timeout was 1.5 seconds. Our model
predicts that with this timeout, “timeout kill” is clearly the
faster strategy (21% faster when using the index finger,
18% with the thumb). It is assumed that expert users adopt
the faster strategy. This is supported by our observations of
users at the Nokia Research Center: a majority of
experienced multi-press users employ the timeout kill
strategy.

Predictions are clearly higher for the T9 method than for
the multi-press and two-key methods. These differences,
and other interaction issues for T9, are discussed in detail
later.

In comparing the multi-press and two-key methods, the
multi-press method is slower if the user employs the
timeout strategy — waiting for the timeout between
consecutive characters on the same key. However, as
expertise develops, users will invoke the timeout kill
function. With an optimal use of timeout kill, the multi-
press method is faster than the two-key method.

Input via the index finger is also consistently faster than
with the thumb. The difference is largest with T9 and the
two-key input methods where the index finger is 13% faster
than with the thumb. The difference is smaller with the
multi-press method. This is due to the steeper slope of the
Fitts’ law model for the thumb in Figure 4. With small IDs
the difference between the index finger and thumb is quite
small; the multi-press method involves many key-
repetitions (ID = 0), which diminishes the difference
between the index finger and thumb.

Within the multi-press method, the difference for the index
finger is larger with the “timeout kill” strategy (11%) than
with “wait for timeout” (8%). This is due to the constant
length of the timeout, which diminishes the differences
between input fingers in our “wait for timeout” results.

Comparisons With Empirical Data
There are, at present, no published data on text entry rates
with mobile phones. As this mode of interaction evolves
and enters the mainstream of mobile computing, however,
this should change. Furthermore, there are few people who

may be deemed “experts” in mobile phone text entry. The
investigation described herein is in anticipation of an ever-
increasing demand for this mode of text entry.

While formal user studies are preferred, we commonly
perform quick and simple checks of novel text entry
techniques using the well-known phrase, “the quick brown
fox jumps over the lazy dog”. This 43-character phrase
includes every letter of the alphabet, and therefore ensures
that each key, or key combination, is visited during entry.

Within our lab, one user performs a substantial amount of
mobile phone text entry via the multi-press method, and, in
our view, approaches the status of expert. For example,
this person routinely uses the timeout kill feature where
applicable. We asked this person to perform timed input of
the quick-brown-fox phrase. In three repetitions using
thumb input, the times were 27 s, 23 s, and 24 s, with 0
errors in each case. The mean entry time was 24.6 s. For a
43-character phrase, this translates into a text entry rate of
21.0 wpm. This is surprisingly close to our predicted
expert entry rate of 24.5 wpm.

We asked the same user to perform the same test with a T9-
enabled cell phone. We asked the user to ignore the
possible need for the NEXT function, and to enter the
phrase directly. The entry times were 15 s, 15 s, and 16 s.
The only error was for the key sequence 5-2-9-9-0, which
T9 incorrectly disambiguated to “jazz” instead of “lazy”.
The mean entry time of 15.7 s translates into an entry rate
of 32.9 wpm. Keeping in mind that this user does not use
T9 on a daily basis, the observed rate is reasonably close to
our predicted expert entry rate of 40.6 wpm.

Interaction and Linguistic Issues for T9
The very generous predictions for T9 in Figure 6 should be
viewed in the narrow context of our model. For example,
our model is for experts and ignores the novice or learning
behaviour that most users of this emerging input technique
will experience.

As well, our model attends only to the motor component of
the interaction. The need to visually scan the keyboard to
find each character is not accounted for. We feel this is a
relatively minor issue, since most users are already familiar
with phone keypads. Expert status, in the sense of knowing
the position of characters on a phone keypad, should be
easily acquired in our view.

Of greater concern is the role of the NEXT function with
T9. Two questions arise. First, how often is the NEXT
function required? And second, what behaviour will users
exhibit in using the NEXT function?

The answer to the first question is determined by the
dictionary, or linguistic model, embedded in T9. It is
relatively straightforward to determine the outcome of
disambiguation for any dictionary. For example, Figure 7
provides an analysis using the word sample discussed
earlier. The results are quite impressive. Of the 9025

words in the sample, 8437 (95%) can be entered and
uniquely disambiguated.

The number of words requiring 1, 2, 3, 4, or 5 presses of
the NEXT function is 476, 83, 23, 5, and 1, respectively.

8437

476
83 23 5 1

0

2000

4000

6000

8000

10000

0 1 2 3 4 5
Presses of NEXT

W
or

d
fr

eq
ue

nc
y

Figure 7. Use of NEXT for a sample of 9025 words

Figure 8 illustrates some ambiguous words – those
requiring 4 or 5 presses of the NEXT function.

Key
sequence

Initial
word

Presses
of NEXT

Subsequent
words

2-2-7-3 case 5 care, base, card, bare,
cape

2-6-9 any 4 boy, box, cow, box

7-2-4-3 said 4 page, paid, raid, rage

7-2-6 ran 4 sam, san, pan, ram

7-2-9 say 4 saw, pay, raw, ray

Figure 8. Examples of ambiguous words for T9

The initial word for any key sequence is the one with the
highest probability in the linguistic model, while
subsequent words are produced in decreasing order of their
probability. Note that our word sample, as well as that in
the T9 dictionary, includes proper nouns (e.g., Sam).

Although the T9 dictionary and the disambiguation process
are considered proprietary by Tegic, we tested a T9-
enabled mobile phone with the key sequences in Figure 8.
All the words in Figure 8 were produced, although there
were a few minor differences in the sequences.

Answering the second question above is much more
difficult since it involves user strategies. Although as many
as 95% of words entered will correctly appear by default,
users will not necessarily anticipate this. Thus, there is a
need for the user to visually verify input. This behaviour is
outside the scope of our model, as noted earlier. It is also a

behaviour that is difficult to empirically model, since there
are both perceptual and cognitive processes at work.

Figure 9 presents a parametric analysis of the use of the
NEXT function for two components of the behaviour for
thumb input. First, the percentage of words for which
visual inspection is performed is included: 0%, 25%, 50%,
75%, and 100%. For the 0% condition, the user never
visually verifies input. For the 100% condition, the user
visually verifies input after each word entered.

Second, the perceptual-plus-cognitive time associated with
visual inspection is shown along the horizontal axis as a
continuum from 0 to 1000 ms. Note that the movement
time for multiple invocations of the NEXT function is quite
small because it requires multiple presses of the same key
(*).

20

25

30

35

40

45

50

0 250 500 750 1000

Time lag for NEXT operation (ms)

E
nt

ry
 r

at
e

(w
pm

) 0 %

25 %

50 %

75 %

100 %

Figure 9. Parametric analysis for T9 user
behaviour (see text for discussion)

Expert usage appears along the top line in Figure 9. That
is, the user always knows when the next function is
required and never visually verifies input. Although this
behaviour will never fully occur, it may occur by degree.
For example, a user may quickly learn that the word “on”
requires the key sequence 6-6-0, whereas the word “no”
requires the NEXT function: 6-6-*-0.

If the user visually verifies input 50% of the time (far more
often than necessary, in fact), and each inspection takes
500 ms, then the T9 prediction falls to 35 wpm (see Figure
9). Bear in mind that this prediction is still predicated
upon expert behaviour with respect to the keypad layout
(i.e., no visual scan time to find the correct key). So, the
prediction is still overly generous, perhaps.

Exploring hypothetical scenarios such as this, although
important in characterizing user behaviour, is very weak in
its ability to generate accurate predictions. Modeling
expert performance is a luxury that affords a simplified

view of user behaviour. Once we step off this ideal and
attempt to accommodate more natural components of the
interaction, there is an explosion in the sources and extent
of variations. And so, the preceding exploration of T9
interaction will not be developed further. Suffice it to say
that we expect T9 text entry rates to be slower than those
cited above, consistent with a user’s position on the
learning curve and on the interaction strategy employed.

There are many other interactions issues, as well, such as
the need to input numeric and punctuation symbols, or
words not in the dictionary. Implementations of T9 we
have tested include modes to insert words using the multi-
press technique or to insert symbols from a displayed list.
These important properties of the interaction are not
accounted for in our current model.

CONCLUSIONS
We have provided predictions for expert text entry rates for
several input schemes on mobile phones. The traditional
multi-press method can support rates up to about 25 wpm
or 27 wpm for one-handed thumb input or two-handed
index finger input, respectively, provided the user
effectively employs the timeout kill feature for consecutive
characters on the same key. If the timeout is used to
distinguish consecutive characters on the same key, then
the entry rates will decrease by about 4 wpm in each case.

The two-key input technique is slightly slower than the
multi-press method (using timeout kill): 22 wpm and 25
wpm for one-handed thumb input and two-handed index
finger input, respectively.

The relatively new T9 technique requires only one key
press per character, and relies on a built-in linguistic model
to disambiguate input on a word-by-word basis. Text entry
rates of 41 wpm and 46 wpm are predicted for one-handed
thumb input and two-handed index finger input,
respectively. These figures are for expert behaviour and a
“perfect” disambiguation algorithm. Our analyses suggest
that word-level disambiguation for English text with the
traditional character layout on phone keypad is achievable
with about 95% accuracy. The overhead of interacting
with less-than-perfect disambiguation degrades
performance, but the cost is difficult to quantify because of
the complex and varied strategies that users may employ.

REFERENCES
[1] Bellman, T., and MacKenzie, I. S. A probabilistic
character layout strategy for mobile text entry, Proc of
Graphics Interface ’98. Toronto: CIPS, 1998, 168-176.

[2] Bohan, M., Phipps, C. A., Chaparro, A., and

Halcomb, C. G. A psychophysical comparison of two
stylus-driven soft keyboards, Proc of Graphics Interface
’99. Toronto: CIPS, 1999.

[3] Card, S. K., Moran, T. P., and Newell, A. The
psychology of human-computer interaction, (Hillsdale, NJ:
Lawrence Erlbaum, 1983).

[4] Drury, C. G., and Hoffmann, E. R. A model for
movement time on data-entry keyboards, Ergonomics 35
(1992), 129-147.

[5] Epps, B. W. Comparison of six cursor control devices
based on Fitts' law models, Proc Human Factors Society.
Santa Monica, CA: HFS, 1986, 327-331.

[6] Fitts, P. M. The information capacity of the human
motor system in controlling the amplitude of movement,
Journal of Experimental Psychology 47 (1954), 381-391.

[7] Gan, K.-C., and Hoffmann, E. R. Geometrical
conditions for ballistic and visually controlled movements,
Ergonomics 31 (1988), 829-839.

[8] Grover, D. L., King, M. T., and Kuschler, C. A.
Patent No. US5818437, Reduced keyboard disambiguating
computer. Tegic Communications, Inc., Seattle, WA
(1998).

[9] ISO/IEC 9995-8. Information systems - Keyboard
layouts for text and office systems - Part 8: Allocation of
letters to the keys of a numeric keypad, International
Organisation for Standardisation, 1994.

[10] MacKenzie, I. S. Fitts' law as a research and design
tool in human-computer interaction, Human-Computer
Interaction 7 (1992), 91-139.

[11] MacKenzie, I. S., and Buxton, W. Extending Fitts'
law to two-dimensional tasks, Proc of CHI92. New York:
ACM, 1992, 219-226.

[12] MacKenzie, I. S., Sellen, A., and Buxton, W. A
comparison of input devices in elemental pointing and
dragging tasks, Proc of CHI91. New York: ACM, 1991,
161-166.

[13] MacKenzie, I. S., and Zhang, S. The design and
evaluation of a high-performance soft keyboard, Proc of
CHI99. New York: ACM, 1999, 25-31.

[14] Martin, G. L. Configuring a numeric keypad for a
touch screen, Ergonomics 31 (1988), 945-953.

[15] Soukoreff, W., and MacKenzie, I. S. Theoretical
upper and lower bounds on typing speeds using a stylus
and keyboard, Behaviour & Information Technology 14
(1995), 370-379.

